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Introduction 

Pain is an unpleasant sensation caused by the stimulation of nerve endings due to 

tissue damage. It is one of the most debilitating symptoms of medical conditions, 
capable of reducing quality of life and making daily tasks more difficult (1). 

Current management strategies for pain include non-steroidal anti-

inflammatory drugs and opioids. Although these drugs are commonly used in 

therapeutic settings, only a small percentage of individuals who take them 

experience satisfactory pain relief. Furthermore, their use is associated with dose-

limiting adverse effects. Therefore, it is necessary to understand the molecular 
mechanisms of pain and identify safe and efficient analgesic treatments (2).  

The Tac1 gene encodes substance P (SP), an 11-amino-acid neuropeptide. It 
is the most effective tachykinin ligand for the neurokinin-1 receptor (NK-1R) 

(3,4). The SP concentration in different brain regions changes in response to 

painful stimuli. Furthermore, SP affects other brain areas, such as the thalamus, 
lateral hypothalamus, and amygdala, which are known to be involved in pain 

mechanisms (5,3). A study has also shown that the injection of an SP antagonist 

leads to pain inhibition (6). 
CGRP consists of 37 amino acids and belongs to the calcitonin (CT) peptide 

family. CGRP receptors in the central nervous system are distributed across 

various areas associated with pain, particularly the insula, amygdala, and lateral 
hypothalamus (7). Acute and chronic pain cause sensory nerve endings and 

central terminals to release varying amounts of CGRP. Evidence shows that  pain 

is reduced following the administration of a CGRP receptor antagonist in rats (8). 
Therefore, research on intra-cerebral molecular mechanisms to control pain is 

crucial for improving and selecting appropriate treatments for individuals with 

pain syndromes. 
Chrysin is a phytochemical compound found in several plants, such as 

Passiflora incarnata, Passiflora coerulea, and Oroxylum indicum (9). Chrysin 

also exhibits potent pharmacological properties, including anti-stress, anti-pain, 
anti-inflammatory, immune-regulatory, antioxidant, anticancer, neuroprotective, 

and antiviral activities (10). Studies reveal that chrysin's anti-pain benefits may 

be due to its GABAergic activity and interactions with specific neurotransmitter 

systems (11). While the analgesic effects of chrysin have been reported, it has 

also been observed that neuropeptides in the hypothalamus participate in 
analgesic activities, yet the molecular mechanism of chrysin's effects remains 

unclear. Therefore, in the present study, the analgesic effect of chrysin was 

investigated on hypothalamic CGRP and Tac1 gene expression in a formalin-
induced pain model. 
 

Methods 

Material 

Chrysin (CAS No. 480-40-0, Co, USA) and formaldehyde solution (37%) were 

purchased from Sigma-Aldrich. The kits used included TRIzol (Biotech Rabbit, 

Germany), cDNA (Vivantis Co., Malaysia), and SYBR Green I (Takara Bio Inc., 
Japan). 

Animal 

Male Wistar rats weighing 200 ± 10 g were used. The rats were housed in the 

laboratory for two weeks and had free access to food and water. The temperature 
was maintained at 23 ± 2ºC with a 12-hour light/dark cycle.    

Surgical procedure 

First, the rats were anesthetized with an intraperitoneal administration of 

ketamine (80 mg/kg) and xylazine. The coordinates of the third cerebral ventricle 
were determined to implant the cannula in the skull (AP = 0.84 mm, ML = 0, DV 

= 6.5 mm) (12,13). The rats were kept in the laboratory to recover. After a one-

week recovery period, chrysin (3 μl) was injected into the third cerebral ventricle 
using a Hamilton syringe.  

Design and treatment 

Twenty male rats were divided into four groups (n = 5). Chrysin was injected into 

the rats as follows: Group I and II: Control and formalin rats received only saline. 
Group III: The formalin group received chrysin (20 μg, I.C.V.). Group IV: The 

formalin group received chrysin (40 μg, I.C.V.) (14). After 30 minutes, pain was 

induced with formalin, and the animals' behavior was examined. Finally, at the 
end of the experiment, the animals were euthanized. The hypothalamic samples 

were removed and immediately stored at -80°C.   

Pain induction and behavior test 

To induce pain, 50 μl of formalin (5%) was injected subcutaneously into the 
plantar hind paw of the rat using a 30-gauge syringe. Immediately after the 

formalin injection, the animal was placed in a transparent compartment (30 × 30 

× 30 cm). The behavioral test was conducted for 60 minutes. Then, the pain score 
(every 5 min) in response to the formalin injection was calculated as follows: 0T0 

Highlights 

What is current knowledge? 

The molecular mechanism of the analgesic effects of chrysin remains 

unknown. 

What is new here? 

Chrysin can exert its analgesic effects by inhibiting central neuron signaling 
in the rat hypothalamus. 

Abstract 

Background: Chrysin is a natural bioactive compound belonging to the flavonoid group. The pain-relieving effects 
of chrysin have been reported in several studies; however, the molecular mechanism underlying its analgesic 

properties remains unknown. In the present study, the analgesic effect of chrysin was investigated on the 

hypothalamic Calcitonin Gene-Related Peptide (CGRP) and Tachykinin 1 (Tac1) gene expression in a formalin-

induced pain model. 

Methods: Twenty male rats weighing 200 ± 10 g were divided into four groups. Pain was induced by injecting 50 μl 

of formalin into the hind paw. The control and formalin groups received saline. In addition, 20 or 40 µg of chrysin 
was injected into pain-induced rats via the third cerebral ventricle. After 30 minutes, a behavioral test was conducted. 

Hypothalamus samples were then dissected, and real-time polymerase chain reaction (PCR) was performed to 

measure gene expression. 

Results: The mRNA levels of CGRP and Tac1 significantly increased in the formalin-treated rats compared to the 

control group. In contrast, the mRNA levels of CGRP and Tac1 were significantly reduced in the chrysin-treated 

groups compared to the formalin group. Furthermore, the pain score was significantly lower in the chrysin-treated 
groups compared to the formalin group. 

Conclusion: The pain-relieving effects of chrysin were mediated through the downregulation of hypothalamic CGRP 

and Tac1 in the pain model rats. 

 

 

© The author(s) 

https://jorjanijournal.goums.ac.ir/browse.php?a_id=1017&sid=1&slc_lang=en&ftxt=0
https://www.ncbi.nlm.nih.gov/mesh/68015740
https://www.ncbi.nlm.nih.gov/mesh/2049878
https://www.ncbi.nlm.nih.gov/mesh/67043561
https://www.ncbi.nlm.nih.gov/mesh/68000700
https://www.ncbi.nlm.nih.gov/mesh/68005557
https://www.ncbi.nlm.nih.gov/mesh/68007031
https://jorjanijournal.goums.ac.ir/admin_emailer.php?mod=send_form&sid=1&slc_lang=fa&em=f.mahmoudi-ATSIGN-uma.ac.ir&a_ordnum=1017
https://orcid.org/0000-0002-9016-3086
https://orcid.org/0000-0001-6092-1352
https://orcid.org/0000-0002-3231-0463
https://jorjanijournal.goums.ac.ir/article-1-1017-en.html


Chrysin affects Tac1 and CGRP gene expression 19 

× 1T1 × 2T2 × 3T3/300. 0: the animal with equal weight places both feet on the 

floor; 1: the foot is placed a short distance from the floor, and the paw is not 

spread; 2: the foot is completely elevated; 3: when the foot is licked. Finally, the 
total score was obtained by summing the calculated scores (15).  

Reverse transcriptase PCR 

The hypothalamic sample was used with a TRIzol reagent kit to extract total 

RNA. The RNA concentration was measured using a NanoDrop. Next, cDNA 
was synthesized following the kit's instructions (Biotech Rabbit, Germany). Gene 

amplification was performed according to the kit's instructions using a PCR 

apparatus and SYBR Green I (Takara Bio Inc., Japan). The device was set up 
with the following time cycle: one cycle  at 95 °C for 15 minutes, followed by 40 

cycles consisting of denaturation at 95 °C for 20 seconds, annealing at 60 °C for 

15 seconds, and extension at 72 °C for 10 seconds. The sequences used to produce 
the forward and reverse primers are listed in Table 1 (16,17). The Tac1, CGRP, 

and GAPDH amplified products were 195, 155, and 120 base pairs, respectively. 

The fold change in each gene expression was calculated using the equation 2-ΔΔCT 

(18).  
 

 

Statistical analysis 

Data analysis was performed using SPSS software (Version 16) and One-way 

ANOVA. Tukey's post-hoc test was conducted to determine the significant 

differences between the groups. A significance level of P-Value ≤ 0.05 was used. 
The results are expressed as mean ± SEM.  
 

Results 

Effects of chrysin on the modulation of pain responses 

The pain score in the formalin group was significantly higher compared to the 

control group in phase 1 (0-5 min) and phase 2 (20-60 min). Investigating the 

pain score showed that the injection of 20 or 40 μg of chrysin decreased the pain 

score compared to the formalin group in phase 1. The decrease was significant 

only in the 40 μg group (P-Value ≤ 0.05). In addition, in both the 40 μg and 20 
μg chrysin groups, pain scores were significantly reduced compared to the 

formalin group in phase 2 (P-Value ≤ 0.05) (Figure 1). 

 
 

 

Effect of chrysin on the expression of hypothalamic genes 

Hypothalamic Tac1 mRNA levels in the formalin group significantly increased 
compared to the control group (P-Value ≤ 0.05). Injection of 20 or 40 μg of 

chrysin in both groups, compared to the formalin group, caused a decrease in 

Tac1 mRNA levels. The decrease was statistically significant (P-Value ≤ 0.05) 
(Figure 2). In addition, hypothalamic CGRP mRNA levels significantly increased 

in the formalin group compared to the control group (P-Value ≤ 0.05). In both 

groups receiving 20 or 40 μg of chrysin, compared to the formalin group, a 
significant decrease in CGRP mRNA levels was observed (P-Value ≤ 0.05) 

(Figure 3). 

 

Discussion 

In the present study, the effect of chrysin on the expression of Tac1 and CGRP 
genes and pain-related behaviors in formalin-induced pain rats was investigated. 

It appears that pain behaviors in phases 1 and 2 are differentially regulated, as the 

pain behavior in the first phase is primarily caused by the direct stimulation of 
nociceptors, whereas the pain behavior in the second phase involves both 

inflammatory mechanisms and central sensitization (19). Our results indicated 

that chrysin is effective in relieving the pain score in both phases 1 and 2 in 
formalin-induced pain rats. Our findings are consistent with previous studies 

showing that chrysin decreased formalin-induced pain during both phases 1 and 

2 (20). The effect of chrysin on both phases is likely due to its neuroprotective 
and anti-inflammatory properties. 

Our results showed that CGRP gene expression increased significantly in the 

formalin group compared with the control group. This result is consistent with a 
previous report showing that CGRP neurons are activated following chronic pain 

(21). It has been shown that corticotropin-releasing hormone (CRH) in the 

hypothalamus plays an important role in pain and stress responses (22). In 
addition, in the hypothalamus, CGRP neurons are located upstream of CRH 

neurons, which indicates an interaction between CRH neurons and CGRP. As a 

result, the increase in the activity of CRH neurons leads to an enhancement in 
CGRP levels. On the other hand, it has been reported that CGRP modulates CRH 

signaling (23,24). 

Different neurotransmitters are synthesized in the hypothalamus, which 
together control the pain signaling pathways. One of the most important 

neurotransmitters is GABA. The GABAergic system in the lateral hypothalamus 
is connected with CGRP neurons, so that stimulation of GABA neurons leads to 

inhibition of CGRP levels in response to pain (25). In addition, the GABAergic 

system interacts with CRH neurons in the lateral hypothalamus. Studies show 

that the injection of a GABA receptor antagonist leads to an increase in the 

plasma level of corticosterone and pain induction (26). Moreover, the importance 

of GABAB receptors in pain processing has been confirmed by injecting baclofen 
(A GABAB receptor agonist) into acute and chronic pain model rats (27). Some 

research shows that increased levels of glutamate make neurons more sensitive 

to pain (28). Furthermore, the glutamatergic system can also affect other factors 
involved in pain, such as CGRP (29).  

Table 1. Sequences of sense and antisense primers 

Primers sequences Primer Name 

5'-TGACCTCCTCAGACAGAAGTAGAA-3' 

5'-TAAAAGCAACCAAGGGAAGC-3' 
Tac1: Sense antisense 

5'- TCTAAGCGGTGTGGGAATCT-3' 

5'- TAGGGGTGGTGGTTTGTCTC-3' 
CGRP: Sense antisense 

5′- AAGTTCAACGGCACAGTCAAG-3′ 

5′- CATACTCAGCACCAGCATCAC-3′ 
GAPDH: Sense antisense 

 

 

Figure 1. The effect of chrysin (20 or 40 μg) on pain score in rats. Four groups of rats 

received saline or chrysin during the induction of pain. The results showed that the pain 

score decreased in animals that received chrysin compared to the saline group in Phase 

1 (0-5 min) and Phase 2 (20-60 min). The results are expressed as mean ± SEM, and 

significance was defined by P-Value ≤ 0.05. *: compared with control (Phase 1); and: 

compared with control (Phase 2). 

 

Figure 2. The effect of chrysin (20 or 40 μg) on hypothalamic Tac1 mRNA levels. Four 

groups of rats received saline or chrysin during the induction of pain. The results 

showed that Tac1 mRNA levels decreased in animals that received chrysin compared 

to the saline group. The results are expressed as mean ± SEM, and significance was 

defined by P-Value ≤ 0.05. *: compared with control; &: compared with formalin. 

 

 

 

Figure 3. The effect of chrysin (20 or 40 μg) on hypothalamic CGRP mRNA levels. 

Four groups of rats received saline or chrysin during the induction of pain. The results 

showed that CGRP mRNA levels decreased in animals that received chrysin compared 

to the saline group. The results are expressed as mean ± SEM, and significance was 

defined by P-Value ≤ 0.05. *: compared with control; &: compared with formalin. 
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Chrysin exerts stimulatory effects on the GABAergic system. In addition, 

this compound acts as an antagonist of glutamate receptors in the central nervous 

system (30). Therefore, chrysin may reduce the expression of the CGRP gene in 
formalin-treated rats by inhibiting the activity of the glutamatergic system and 

stimulating the activity of the GABAergic system, which interacts with CRH 

neurons.  
There is also a close relationship between sympathetic activity and pain 

induction. For example, increasing the levels of adrenaline and norepinephrine 

hormones can strengthen pain signals (31). In addition, an increase in the activity 
of the sympathetic system may lead to an increase in the synthesis of CGRP, 

indicating its important role in pain regulation (32). On the other hand, it has been 

demonstrated that chrysin inhibits the activity of the sympathetic system (19). 
Therefore, another possible mechanism for the inhibitory effects of chrysin on 

CGRP gene expression and pain inhibition may involve suppressing the activity 

of the sympathetic system.  
Our results also showed that in the formalin-model rats, the expression of 

substance P (Tac1) gene increased compared to the control group. Evidence also 

shows that inhibiting substance P and its receptors can help reduce pain and 
inflammation (33). Pain and increased levels of substance P in the hypothalamus 

lead to activation of the HPA axis and increased corticosteroid levels. On the 

other hand, corticosterone injection leads to an increase in substance P (34). In 

addition, studies show that substance P neurons of the lateral hypothalamus are 

under the control of the excitatory effects of glutamate and the inhibitory effects 

of GABA neurons (35). Therefore, intracerebral injection of chrysin, due to its 
GABAergic and anti-glutamatergic actions, may lead to inhibition of 

hypothalamic substance P (Tac1) gene expression in formalin model rats through 
suppression of HPA axis activity. 

Basic studies suggest that the substance P receptor is effective in modulating 

pain through its effects on serotonin (5-HT) neurons. Pain induction in rodents is 
associated with an increase in substance P synthesis. On the other hand, it has 

been shown that an increase in the level of serotonin leads to a decrease in the 

level of substance P in rats (36). In addition, it has been reported that serotonin 
has analgesic effects and reduces pain sensitivity (37). Previous studies have 

shown that treatment with chrysin leads to an increase in serotonin levels in brain 

tissues in rats (30). Based on this, chrysin may decrease the expression of the 
substance P (Tac1) gene in formalin-induced pain rats by increasing the activity 

level of the serotonergic system. 

 

Conclusion 

In conclusion, the findings of the pain behavioral test showed that formalin-

induced pain behaviors were improved following the third cerebral ventricular 

injection of chrysin. One of the possible intra-hypothalamic molecular 
mechanisms underlying chrysin's analgesic effects may be the down-regulation 

of SP (Tac1) and CGRP mRNA levels. Chrysin may be a potential target for the 

management of pain syndrome. 
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